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Preface 

 
AAMAS 2009 included a doctoral mentoring program intended for PhD 

students in advanced stages of their research. The program provided 

an opportunity for students to interact closely with established 
researchers in their fields, to receive feedback on their work and to get 

advice on managing their careers.  

 

Specifically, the goals of the program were: 
• To match each student with an established researcher in the 

community (who will act as a mentor).  

• To allow students an opportunity to present their work to a 

friendly audience of other students as well as mentors. 
• To provide students with contacts and professional networking 

opportunities. 

The doctoral mentoring program afforded mentors and their students  

opportunities for interactions prior to the conference, as well as a one-
day doctoral symposium on the first day of the conference. 

 

This document is a compilation of the research abstracts by the 

students in the consortium. 
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Increasing Scalability in Algorithms for Centralized
and Decentralized Partially Observable

Markov Decision Processes

(Extended Abstract)
Christopher Amato

Department of Computer Science
University of Massachusetts

Amherst, MA 01003 USA
camato@cs.umass.edu.com

ABSTRACT
Real-world problems contain many forms of uncertainty, but
current algorithms for solving sequential decision making
problems under uncertainty are limited to small problems
due to large resource usage. In my thesis, I study methods
to increase the scalability of these approaches such as using
memory bounded solutions, sampling or taking advantage of
domain structure. I also plan to explore other methods to
improve scalability and generate more practical real-world
domains on which to test these algorithms.

1. INTRODUCTION
Sequential decision making under uncertainty is a thriv-

ing research area. In these problems, agents must choose a
sequence of actions to maximize a given objective function.
The actions must be chosen based on imperfect informa-
tion about the system state due to stochastic action results
and noisy sensors. When multiple cooperative agents are
present, each agent must also reason about the action choices
of the others in order to maximize joint value while making
decisions based solely on local information. Using single and
multi-agent sequential decision making under uncertainty a
wide range of single and multi-agent problems can be rep-
resented, but the computational complexity of solving these
models presents an important research challenge.

As a way to address this high complexity, some topics that
I study in my thesis include: optimizing agent performance
with limited resources, achieving coordination without com-
munication, exploiting goals in multi-agent coordination and
using sampling to reason about the future. The models used
to represent single and multi-agent problems are the par-
tially observable Markov decision process (POMDPs) and
decentralized POMDP (DEC-POMDP). POMDPs represent
stochastic actions and uncertainty about the current system
state. DEC-POMDPs extend the POMDP model to multi-
ple cooperative agents.

I first discuss the work that I have completed towards
studying these problems. I then describe the additional re-
search that I expect to complete for my thesis. Note that
because no communication is assumed in my work with the
DEC-POMDP model, agents must plan without explicitly
sharing information.

Figure 1: A set of two node stochastic controllers
for a two agent DEC-POMDP.

2. OPTIMIZING CONTROLLERS FOR
POMDPS AND DEC-POMDPS

Finite state controllers (depicted in Figure 1) have been
shown to effectively model solutions for both infinite-horizon
POMDPs [5] and DEC-POMDPs [4, 6]. This approach fa-
cilitates scalability as it offers a tradeoff between solution
quality and the usage of available resources. That is, a con-
troller may be optimized for a given amount of memory.

Unlike other controller based approaches for POMDPs
and DEC-POMDPs, our formulation defines an optimal so-
lution for a given size. This is accomplished by formulating
the problem as a nonlinear program (NLP), and exploiting
existing nonlinear optimization techniques to solve it. In the
POMDP case, parameters are optimized for a fixed-size con-
troller which produces the policy [2]. In the DEC-POMDP
case, a set of fixed-size independent controllers is optimized,
which when combined, produce the policy [1]. While an
overview of how to solve these problems optimally is pre-
sented in the thesis, this would often be intractable in prac-
tice. As a result, we also evaluate an effective approximation
technique using standard NLP solvers.

One premise of our work is that an optimal formulation of
the problem facilitates the design of solution techniques that
can overcome the limitations of previous controller-based
algorithms and produce better stochastic controllers. The
general nature of our formulation allows a wide range of so-
lution methods to be used. This results in a search that is
more sophisticated than those previously used in controller-
based methods. Our approach also provides a framework for
which future algorithms can be developed.
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Two Agent Tiger Problem |S| = 2, |A| = 3, |Ω| = 2
BFS DEC-BPI NLP Goal-directed

-14.1, 12007s -52.6, 102s -1.1, 6173s 5.0, 75s

Meeting in a Grid Problem |S| = 16, |A| = 5, |Ω| = 2
BFS DEC-BPI NLP Goal-directed

4.2, 17s 3.6, 2227s 5.7, 117s 5.6, 4s

Box Pushing Problem |S| = 100, |A| = 4, |Ω| = 5
BFS DEC-BPI NLP Goal-directed

-2, 1696s 9.4, 4094s 54.2, 1824s 149.9, 199s

Rover Problems |S| = 256, |A| = 6, |Ω| = 8
BFS DEC-BPI NLP Goal-directed

x -1.1, 11262s 9.6, 379s 26.9, 491s
x -1.2, 14069s 8.1, 438s 21.5, 956s

Table 1: The values produced by each method along
with controller size and time in seconds.

Our results demonstrate that local optimization of the
NLP formulation provides concise high quality solutions. In
POMDP domains, our technique was competitive in general
and outperformed a leading approximate algorithm on a set
of problems. In DEC-POMDP domains, our approach sig-
nificantly outperformed other approximate algorithms, often
producing the highest value while using the least amount of
time. Further improvement in solution quality is likely as
more specialized solution methods are developed.

3. ACHIEVING GOALS IN DEC-POMDPS
Another method of improving scalability is to take advan-

tage of structure inherent in domains. One such structure
is the achievement of goals, after which the problem termi-
nates. We have demonstrated that when certain goal con-
ditions are present in DEC-POMDPs, this structure can be
used to improve scalability and solution quality [3].

To demonstrate this, we have extended the indefinite-
horizon framework to decentralized domains using common
assumptions – that terminal actions exist for each agent and
rewards for non-terminal actions are negative. Under these
assumptions we showed that dynamic programming could
be adapted to solve the indefinite-horizon problem. We also
developed a sample-based algorithm which is able to solve
problems with more relaxed goal conditions. For this algo-
rithm, we provided a bound detailing the number of samples
required to ensure that the optimal solution is approached.
As shown in Table 1 this algorithm was often able to signif-
icantly outperform other DEC-POMDP approximate algo-
rithms on a range of goal-directed problems. The approach
also provides the framework for sample-based methods to be
extended to other classes of decentralized problems.

4. FUTURE CONTRIBUTIONS
In addition to the work above, I also plan to work on the

following projects for my thesis.

Incremental policy generation
We are currently developing a method to improve optimal
DEC-POMDP algorithms by reducing the necessary search
space. This will allow larger problems to be solved optimally
and better solutions to be found for other problems. This
is accomplished by determining what states are reachable

after different action choices are made and observations are
seen by the agents. Because not all states will be reach-
able, not all states will need to be considered to determine
a solution. An example of this is a robot observing a wall
to its left. The exact system state may not be known, but
it can be limited to those states in which the agent has a
wall to its left. If the number of solutions can be sufficiently
limited, we may be able to identify natural lower complex-
ity subclasses. This approach can also be incorporated in a
number of approximate methods, which will improve their
performance as well.

Attribute-based planning
We are also working on other ways to make use of do-
main information to simplify the planning process in DEC-
POMDPs. This approach would utilize user generated or
learned information in the form of attributes or landmarks
that serve to summarize parts of agent histories. These at-
tributes could include the last location of a wall seen or the
number of steps since another agent was observed. Agents
could remember only these attributes, allowing planning to
be conducted over a smaller set of attributes rather than
over all possible histories.

5. CONCLUSIONS
In conclusion, my thesis work improves scalability and so-

lution quality for solving uncertain single and multi-agent
domains. This is accomplished by such methods as deter-
mining the optimal use of a fixed solution space and uti-
lizing domain structure to improve solution search. These
approaches perform well in a wide range of problems. In the
future, we plan to further improve scalability and solution
quality while applying our methods to real-world domains
such as e-commence, manufacturing or medical diagnosis.

6. REFERENCES
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[2] C. Amato, D. S. Bernstein, and S. Zilberstein. Solving
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programs. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, pages
2418–2424, Hyderabad, India, 2007.

[3] C. Amato and S. Zilberstein. Achieving goals in
decentralized pomdps. In Proceedings of the Eighth
International Joint Conference on Autonomous Agents
and Multiagent Systems, Budapest, Hungary, 2009.

[4] D. S. Bernstein, E. Hansen, and S. Zilberstein.
Bounded policy iteration for decentralized POMDPs. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 1287–1292,
Edinburgh, Scotland, 2005.

[5] P. Poupart and C. Boutilier. Bounded finite state
controllers. In Advances in Neural Information
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[6] D. Szer and F. Charpillet. An optimal best-first search
algorithm for solving infinite horizon DEC-POMDPs.
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Machine Learning, Porto, Portugal, 2005.
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Modelling Rational Agents in Multi-Agent Systems

(Extended Abstract)
Nils Bulling

Department of Informatics, Clausthal University of Technology, Germany
bulling@in.tu-clausthal.de

ABSTRACT
This extended abstract gives an overview about my current
and future research as well as a summary of my PhD thesis.
The thesis is about rational agents in multi-agent systems
where the main focus is on formal methods that allow for
modelling and reasoning about such systems and its com-
prised agents. Several aspects of rational agency are treated,
for instance, rational agents’ behaviors, coalition formation
processes, communication among rational agents, and acting
with limited resources. The main questions which are tried
to be answered are of the following nature: How do rational
agents behave under various restrictions and settings? Com-
plexity issues are considered as well, mainly with respect to
model checking.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic, Temporal logic

General Terms
Theory, Logical foundations

Keywords
multi-agent systems, argumentation, coalition formation, game
theory, temporal logic

1. MOTIVATION AND OVERVIEW
A vast amount of software systems can be considered as

multi-agent systems (MAS) [10, 11], even if the notion of an
agent is not explicitly used. Such systems (e.g. online shops,
distributed systems, web services, and computer games) of-
ten require human or rational decision making to provide a
good and up-to-date service. Computer games are excellent
examples of software programs with an increasing demand
for such rational decision techniques; the same is valid for
a variety of commercial applications. Arguably, basic needs
of most of those programs include knowledge representation
techniques and interfaces that allow to query or infer data

from the information stored. The logic-based approaches
for rational agents we present here provide means for both
points mentioned above. We discuss rationality in MAS from
a more theoretical point of view: The focus is on modelling,
specifying, and verifying the behavior of rational agents, is-
sues important to guarantee that software is reliable and to
ensure that it does what it is supposed to do.

Apart from these cases we consider formal logics as tools
to speak about and to better understand the complex inter-
actions taking place in MAS, again, focussing on rationality.
The main questions we try to answer are of the following
form: How to model and to reason about rational agents? ;
How do rational agents cooperate and communicate? ; or
How do rational agents act under incomplete information
and limited resources?

In addition to the main part, in which we take on a model
theoretic point of view, we also discuss how rationality as-
pects can be analyzed and implemented in the more practical
setting of agent programming languages. Here we especially
focus on communicative acts and how to interpret them.
We also sketch how these tools might be used for reasoning
within agents; clearly, agent programming languages prepare
an appropriate ground for that.

Finally, throughout the thesis we are interested in the
computational aspect of the presented formal frameworks,
in particular in the analysis of the model checking complex-
ity.

2. RATIONALITY ASPECTS IN MAS
In the past it has been shown that modal logics are appli-

cable to a great many of heterogeneous systems. Epistemic
logics, for instance, are used to model and to reason about
knowledge of agents; temporal logics allow to verify temporal
properties of systems. Strategic logics have attracted quite
some interest in recent research. They describe what agents
can enforce and what power coalitions have. Among these
logics Alternating-Time Temporal Logic (ATL for short) [1]
is one of the most influential; it combines temporal concepts
with basic game theoretic ones. ATL is very flexible regard-
ing extensions by other modal concepts, e.g. by epistemic
logic, which often result in powerful and interesting logics
applicable to various areas of MAS.

In this thesis we analyze how ATL can be extended in
such a way that it is suitable for the modelling of various
rationality aspects in MAS as pure ATL does not allow to
speak about sensible strategies per se rather about all pos-
sible behaviors of agents regardless whether they make sense
or not.
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One of the main questions addressed is the following: How
do agents behave if they act according to a given plausibility
or rationality assumption? Apart from the epistemological
gain about agents’ rational behavior the answer provides,
there also is a more practical aspect: In many games, from
a game theoretic point of view, the number of all possi-
ble outcomes is infinite, although only some of them “make
sense”; hence, a notion of rationality (like subgame-perfect
Nash equilibrium) allows to discard the “less sensible” ones,
and to determine what should happen had the game been
played by ideal players. For this purpose we extend ATL
with a notion of plausibility [5] and refer to the logic as
ATLP. This extension of ATL enables us (1) to express vari-
ous rationality assumptions of intelligent agents; (2) to spec-
ify sets of rational strategy profiles in the object language;
and (3) to reason about agents’ play if only those strat-
egy profiles were allowed. For example, we may assume the
agents to play only Nash equilibria, Pareto-optimal profiles
or undominated strategies, and ask about the resulting be-
haviour (and outcomes) under such an assumption. The
logic also gives rise to generalized versions of classical solu-
tion concepts through characterizing patterns of payoffs by
suitably parameterized formulae of ATLP. We investigate
the complexity of model checking for several classes of for-
mulae: It ranges from ∆P

3 to PSPACE in the general case
and from ∆P

3 to ∆P
4 for the most interesting subclasses, and

roughly corresponds to solving extensive games with imper-
fect information.

We do also propose a version of ATLP for imperfect in-
formation games as “pure” ATLP is for perfect information
games only. The resulting logic Constructive Strategic Logic
with plausibility (CSLP) [7, 9] can be used in the same way as
ATLP but now for perfect and imperfect information games.
Moreover, the logic is more than just an independent com-
bination of ATLP with epistemic operators, the plausibility
concept allows to defined a neat doxastic notion, rational
beliefs, on top of knowledge (similar to [4]). We show that
beliefs satisfy axioms KD45. In summary, CSLP can be
used to reason about rational play and rational beliefs un-
der uncertainty.

The previous extension is about classical indistinguisha-
bility between states, however, there is another interesting
angle to incomplete information. Where in ATL the worst
possible response from the other agents is assumed we con-
sider the case in which agents communication and coopera-
tion abilities are limited such that it is not very likely that
the “worst case” will happen. The presented logic ATL with
probabilistic success [6] tries to soften the rigorous notion of
success that underpins ATL and allows to reason about the
likelihood that agents have a successful strategy to enforce
their goals.

Undeniably, cooperation among agents plays a decisive
role in strategic logics, however, in ATL it is only present im-
plicitly. What we would like to analyze is why agents should
cooperate with other agents. For this purpose we combine
an argumentation-based approach to coalition formation [2]
into the semantics of ATL. The proposed logic Coalitional
ATL [3] allows to reason and to model the formation process
of rational coalitions and their power.

Finally, we identify two further ingredients important for
the modelling of rational agents. Firstly, we argue that re-
sources play a decisive role in the selection of the right strat-
egy as agents are usually confronted with a limited amount

of them what should be reflected in the choice of strate-
gies and in the selection of agents to cooperate with. For
this purpose a combination of ATL with a variant of Linear
Logic [8] is proposed where resources are treated as first-
class citizens. Finally, we consider the communication pro-
cess among agents in the more practical setting of agent ori-
ented programming languages. We would like to note that
both of the latter topics are part of our ongoing research.

3. CONCLUSIONS
We have presented several logics to model and to analyze

rationality aspects in MAS; each of them suitable to be used
for a specific aspect of rationality. Our main focus was on a
model theoretic analysis where logics can be used to reason
about a previously built model. This allows for the verifi-
cation and specification of MAS. In consequence the model
checking complexity was important throughout this thesis.
In the case of ATL with limited ressources however we ex-
emplarily showed1 how these logics can also be used from
a deductive point of view, e.g. as inference systems within
agents.

4. REFERENCES
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1More precisely, we will show this as part of our current
research.
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Agents with Emotional Intelligence for Storytelling

João Dias, Ana Paiva INESC-ID
Av. Prof. Cavaco Silva, TagusPark

2780-990 Porto Salvo, Portugal
joao.dias@gaips.inesc-id.pt, ana.paiva@inesc-id.pt

1. INTRODUCTION
In trying to build increasingly believable autonomous char-

acters for virtual environments, researchers successfully ex-
plored the use of emotional systems to endow their agents
with emotional capabilities. Of relevant notice are the abil-
ity to experience and express emotions, and the ability to
use its emotions to influence decision-making. These sys-
tems are often based in appraisal theories, such as OCC [5],
which claim that emotions are a result of subjective evalua-
tions (appraisals) of events and situations.

However, agents with full Emotional Intelligence have been
largely unaddressed so far. By Emotional Intelligence we
mean the definition proposed by Salovey and Mayer[6, 4]:

”Emotional intelligence refers to an ability to rec-
ognize the meanings of emotion and their rela-
tionships, and to reason and problem-solve on
the basis of them.”

Although the ability to monitor feelings and emotions has
been addressed, having explicit knowledge about the ap-
praisal process and other’s emotions, and using that knowl-
edge to reason about emotions and build plans of actions,
has not. This is due in part to the fact that one cannot
address this problem without first tackling the other com-
ponents. Only now we are ready to start addressing it.

We believe that Emotional Intelligence is an important
component to achieve more human-like and believable be-
haviour, especially in a Storytelling scenario where social
interaction and emotional conflicts take a major role. It is
true that it is still possible to achieve believable behaviour
without this component in a storytelling scenario (as in
FearNot![2]), because we can author the characters in a way
to portray such emotional intelligence. However, when fac-
ing an interacting user, this is much harder to do without
a complete Emotional Intelligence. Thus, Emotional Intelli-
gence offer us more flexibility in achieving believable social
behaviour.

2. RELATED WORK
Continuing their research in Emotional Intelligence, Mayer

and Salovey put forward a four branch model that divides
Emotional Intelligence in four main skills:

• perceiving emotions in oneself and others - has
to do with the perception and expression of emotion
through gestures, facial expressions, or other commu-
nication mechanisms. This area was the first one to
be addressed by researchers, and is still an important
subject of research in IVAs and ILEs.

• using emotions to facilitate thought - the second
most researched skill, focus on using emotions to guide
cognitive processes, such as learning and adaptation,
attention and decision making.

• understanding emotions - the idea here is that
emotions convey information. For instance, Anger in-
dicates a possible intention of harming other. There-
fore, understanding emotions involves understanding
the meaning of emotions, together with the capacity
to reason about those meanings. This skill together
will be the focus of our work.

• managing emotions - once a person understand emo-
tions, it can manage one’s own and other’s emotions
in order to promote social goals. For instance, one can
go see a movie when distressed in order to feel better,
or do something pleasant to help a friend come out of
a bad mood. To some extent, this skill was addressed
by the work of Marsella and Gratch in EMA[3], where
they apply emotion coping strategies to deal with one’s
negative emotions.

3. MODEL
The proposed model will be integrated and implemented

in an existing emotional agent architecture, named FAtiMA[2,
1]. In FAtiMA, emotions result from a subjective appraisal
of events according with OCC Theory. The architecture is
divided in two main layers, a reactive and a deliberative
one. The first layer is responsible for the agent’s reactive
behaviour and is composed by: a set of emotional reaction
rules that define OCC’s appraisal variables such as desir-
ability which are then used to generate emotions; and by
a set of action tendencies (AT) that represents the charac-
ter’s impulsive actions (e.g. crying when very distressed).
The deliberative layer is responsible for the agent’s goal-
oriented behaviour and means-ends-reasoning. It also has
an appraisal component that generates emotions from the
state of plans in memory. The Knowledge Base and the
Autobiographic Memory are the main memory components.
The top of Figure 1 shows a simplified diagram of the archi-
tecture.

In order to extend FAtiMA with the ability to understand
emotions, we must first endow the planner with explicit
knowledge about the Appraisal Process. This can be done,
by translating the emotional reaction rules into planning op-
erators, which use a STRIPS notation. Then, the OCC rules
used to create emotions from the appraisal variables must
also modeled as planning operators. For instance, the rule
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Figure 1: Extending FAtiMA with the skill of un-
derstanding emotions

that maps an undesirable event into the emotion of distress
is translated into an operator which has the precondition
that an event is undesirable and has the effect of causing
distress. Additionally to the Appraisal Process, is also im-
portant to model actions that are triggered from particular
emotional states, i.e. Action Tendencies. The translation is
achieved by modeling action tendencies as operators where
the preconditions correspond to the emotional state that
triggers the AT. Finally, the planner must also have knowl-
edge about the agent’s emotional state. These connections
are represented in Figure 1 by the black arrows coming out
of the appraisal and AT processes.

This first step gives our agent the capability to reason
about his own’s emotions but only partially about other’s
emotions. Although it is true that the agent can assume that
others are like him and use his information to predict how
others will feel, this will often lead to wrong assessments.
Given the subjective nature of appraisal, the agent must
build a model of how others appraise events and react to a
given emotion. So, if the agent A knows two other agents
B and C he will, additionally to its own structures it will
model the other agents’ emotional reaction rules, emotional
state and action tendencies (as seen in bottom of Figure 1).
Initially, when the agent first meets another agent he will
start with a model equal to his own (he assumes that others
are like him). But as time goes by, the agent will refine the
model it has about that new agent. For instance, if a given
event is thought to be undesirable to another agent, but
that agent happens to express joy or happiness, the agent
will have to update the desirability value for that event.

4. ILLUSTRATIVE EXAMPLE
We will give a brief example of what kind of reasoning an

agent can do with this emotional information. In order to
model a bullying scenario, we can model a bully character
with a high level goal of making the victim cry. In order
to achieve this goal, the bully knows that the victim cries
when it’s very distressed (an AT), so the planner will try to

force the victim to become distressed. The planner will also
know that distress is caused by an undesirable event, and
will consider all actions undesirable for the victim (kicking,
pushing, insulting, etc). The deliberative layer will then
select one of the alternatives and execute it. If everything
goes as planned the bully will succeed and become satisfied.
However, if the victim doesn’t cry but seems happy instead,
he will either try something else or eventually fail to bully
the victim.

5. FINAL CONSIDERATIONS
The proposed extensions will have strong implications in

some of the core components of the architecture. In the
current architecture there is an initial deliberation where a
goal is selected, and then the means-ends reasoning takes
full control of the rest. With the proposed model, there
will be several levels of deliberation and commitment, in-
terleaved with planning. Moreover, by modeling behaviour
with higher-level goals, which can expand to a wide number
of alternative solutions, we will increase the search space
and planning may become intracktable. We believe that
this problem can be solved by using emotional information
as a heuristic to guide and constrain means-ends reasoning,
which actually corresponds to the second skill in Mayer’s
model. Thus, on an ending note, we point out that in order
to tackle the last two skills and build agents with Emotional
Intelligence we need to address all the four skills.
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1. THE PROBLEM
In service-oriented computing environments, computing

resources are managed as services, which can be used di-
rectly or composed into larger services. Service-oriented ar-
chitecture has been widely adopted in modern distributed
environments such as for cloud computing. However, the
problem of finding desired services has arisen. Finding de-
sired services can be divided into two sub-problems: service
discovery and service selection. The former one emphasizes
how to find services that match consumers’ requirements.
The latter focuses on how to select best matched services.
Service discovery usually finds services based on static func-
tional attributes (e.g., service descriptions), whereas service
selection tends to capture the dynamism of nonfunctional
properties. For example, suppose a traveler is looking for
flight tickets from Raleigh to Budapest. Service discovery
returns itineraries provided by various airline companies.
Service selection, on the other hand, selects best quality
itinerary in terms of in-flight service, delay record, etc.

Traditional service discovery approaches, such as, Web
Service Definition Language or WSDL, and Service level
agreement or SLA, describe the functional configurations
of services. However, these approaches lack mechanisms to
monitor and track the nonfunctional properties like qual-
ity of service (QoS) dynamically. For instance, suppose an
United flight delays due to technical difficulties, how this af-
fects the airline company the consumers choose next time?
The QoS assessments should be able to reflect the expected
outcome of future behavior and affect consumers’ willing-
ness to select that service, even though the service matches
their requirements.

2. QOS-BASED SERVICE SELECTION
We introduce the idea of QoS-based service selection ap-

proach to address the problem of selecting services based
on both functional and nonfunctional properties. There are
two main problems to be solved.

The advantage of service-oriented computing is that we
can compose services to create new ones. This is called ser-
vice composition. Much attention on service composition
focuses on lower-level solutions, such as, BPEL, OWL-S,
π-calculus, and Petri nets [5]. These methods capture the
composition configurations, but, similar to WSDL, fail to
take nonfunctional properties into consideration. Services
are composed into larger services. However, these underly-
ing services may not be directly exposed to the consumers.
Service composition can be divided into many scenarios [4]
and these scenarios can be nested. These scenarios make

QoS metrics hard to collect and evaluate. For example,
a traveler books an itinerary from a travel agent without
knowing which hotel agent is behind. Thus, service selec-
tion becomes more complicated because the consumers may
not even know with whom they are interacting. Existing
service selection approaches deal with service composition
poorly because they mostly either not consider service com-
position, or assume the composition information is fully ob-
servable. Therefore, how to collect QoS metrics, and how to
evaluate the underlying services behind composition must
be addressed in our service selection solution.

Another challenge is, even if a service can be evaluated
based on past experience, consumers may lack past experi-
ence of unknown parties. One common solution is to boot-
strap the unknown parties by assigning initial assessments
as new comers. Better solution is to introduce referral net-
works. One may ask others for referrals of an unknown
party, which is called the target. The referrals contain ei-
ther direct information with the target, or further references
if the referrers have no experience themselves. The initial
party can follow the referral chains until certain criteria are
met, say, until a certain depth. After collecting the refer-
rals, the initial party can aggregate all information gathered
as the experience of the target, also evaluate the sociabil-
ity of referrers. The sociability is the ability of providing
accurate referrals.

3. SOCIAL TRUST MODEL
Trust modeling in artificial intelligence provides us a promis-

ing solution to above questions. Trust is a basis of interac-
tions, indicating the relationships between parties in large,
open systems. Two parties must trust each other sufficiently
to be willing to carry out desired interactions. In a service-
oriented context, a party Alice trusts another party Bob,
because Alice expects Bob will provide desired service. In
general, an ideal trust model should contain following func-
tionalities: trust representation, trust propagation, and trust
update.

The trustworthiness of a party should be represented as
not only a probability, but also the confidence of the proba-
bility. An ideal trust representation should satisfy: (a) the
confidence goes up as the evidence increases given a fixed
probability, and (b) the confidence drops if conflicts occur
given a fixed amount of evidence.

Trust propagation defines how trust information is prop-
agated. There are two basic cases. First, how indirect
trust information should be discounted? For example, Alice
trusts Bob who trusts Charlie. Alice should not consider

1
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the trust information of Charlie from Bob totally. Instead,
Alice should discount Bob’s trust in Charlie by her trust in
Bob. Second, how trust information should be combined?
For example, Alice collects trust information of Dave from
both Bob and Charlie. A trust model should define how
trust information from different sources is aggregated.

The third component is trust update. As we gain more
experience with the target, trust should be updated in the
way that updated trust can predict the target’s behavior
more accurately. For example, Alice asks Bob for referrals
of Charlie. When Alice has better knowledge of Charlie, how
she updates her trust in Bob about his sociability? Gener-
ally, given estimated trust and actual knowledge, trust up-
date defines how accurate the estimation is.

Our previous work [1, 2] provides a complete solution to
trust modeling. We adopt the trust representation from [6,
7], which defines trust in both evidence and belief space.
For example, the trust in evidence space 〈r, s〉 represents
how much good and bad evidence we have with the tar-
get. The probability is defined by r

r+s . In belief space,
〈b, d, u〉 corresponds to belief (belief of trust), disbelief (be-
lief of distrust), and uncertainty, respectively. The trust
can be translated between evidence and belief spaces. The
definition of uncertainty satisfies the two requirements of
confidence. We also define trust update by comparing the
difference of probability-densities of the estimation and the
actual trust. Finally, our trust model provides three trust
propagation operators: concatenation, aggregation, and se-
lection. The concatenation operator defines how indirect
information should be discounted, whereas the aggregation
operator is used to combine trust evidence from different
sources. The selection operator exempts trust propagation
from double counting. Additionally, our trust model is veri-
fied via simulations and social network data.

4. QOS-BASED TRUSTWORTHY SERVICE
SELECTION

We aim to provide a QoS-based trustworthy service se-
lection method based on our trust model. There are three
main components as follows:

1. Developing an ontology that include classes, relation-
ships, and attributes required to characterize services
and their uses in service-oriented environments.

2. Formalizing rich service composition models built on
trust attributes specified in the above ontology.

3. Developing approaches for agents to monitor and ex-
plore desired service compositions dynamically.

We refine and enhance an existing QoS ontology from [3]
to fit it into our approach. This ontology will be able to
capture SLAs as well as the requirements of consumers and
advertisements from providers. Both domain-independent
and domain-specific QoS properties can be defined in our
ontology. We model the service-oriented environments by
a directed graph. The graph can capture the relationships
between services in service composition. Then, QoS proper-
ties are monitored and collected from direct experience and
indirect evidence (i.e., referrals). The QoS assessments are
represented as trust. The trustworthiness of a QoS attribute
can be inferred by trust propagation. Also, we can further

evaluate the QoS properties, by comparing the QoS metrics
and SLAs, and the sociability of referrers by trust update.
Knowing the sociability can yield more accurate trust infor-
mation from referrals. Finally, we will apply multiattribute
utility theory for decision-making, based on the trustworthy
QoS assessments.

5. CHALLENGES
Our main challenge is how to capture the relationships in

service compositions so that the trustworthy QoS assessment
can accurately reflect the QoS of services. For example, a
traveler books an itinerary from a travel service, which in-
teracts with a flight service, a hotel service, and a car rental
service. Suppose the availability of the car rental service is
not satisfiable. This ends up with bad availability of the
travel service. Given the fact that the traveler is not aware
of the services behind, an appropriate mechanism is needed
in order to punish the car rental service, and the travel ser-
vice (because it selects the car rental service), rather than
the flight and hotel services.

6. CONCLUSION
This work aims to provide a QoS-based trustworthy ser-

vice selection model in service-oriented environments. The
model provides an ontology to capture consumers’ require-
ments and providers’ advertisements dynamically. We for-
malize a graphical service composition model to capture the
relationships between services, develop approaches for con-
sumers to monitor and explore desired services and service
compositions. Our trust model, built on [1, 2], estimates
trustworthiness of services in term of QoS properties, from
both direct experience and indirect referrals for consumers
to select desired services.
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1. THESIS TOPIC
Sequential decision making from experience, or reinforce-

ment learning (RL), is perfectly suited to autonomous agents
that are situated in an unknown environment, and which
must use their interactions with the environment to learn be-
havior that maximizes long-term gains. In general, this set-
ting can be treated as a Markov Decision Problem (MDP),
comprising a set of states S, a set of actions A, a reward
function R : S × A × S → R, and a transition function
T : S × A× S → [0, 1]. In an MDP, the objective is to find
a policy π : S → A that maximizes the expected long-term
reward from every state s ∈ S. This can be done by deter-
mining the optimal action value function Q∗ : S × A → R,
from which the optimal policy, denoted π∗, can be derived
as: π∗(s) = argmaxa Q∗(s, a),∀s ∈ S.

Classical approaches such as temporal difference learn-
ing [6], which proceed by successively refining the action
value function based on observed experiences, provide effi-
cient solutions to MDPs with finite sets of states and ac-
tions. Yet, a predominant number of sequential decision
making problems that arise in practice have continuous (or
very large) state spaces, which force the use of function ap-
proximation. Further, in many applications, sensor noise
corrupts the state signal. As a consequence, nearly every
RL problem in practice corresponds to a Partially Observ-
able MDP (POMDP), to which most of the theoretical guar-
antees of value function-based (VF) methods fail to extend.
Coping with partial observability in a principled manner has
merited considerable attention in the literature [2], but is yet
to scale to complex tasks with continuous state spaces.

Policy Search (PS) methods [1, 7] are optimization meth-
ods that directly seek to find parameters w∗ of the opti-
mal policy π∗ by searching through the space of parameters
W . In so doing, they do not necessarily compute the value
function of the policy, and consequently, are likely to be
less sample-efficient than VF methods. At the same time,
their asymptotic performance is likely to be affected less by
function approximation and partial observability. For most

sequential decision making problems that arise in practice,
there exist no theoretical bounds for the sample efficiency or
asymptotic performance of either VF or PS methods; it is
left to empirical devices to ascertain how these contrasting
method perform.

This thesis aims to develop learning methods for practi-
cal sequential decision making tasks by integrating VF and
PS methods, with the objective of achieving both sample ef-
ficiency and superior asymptotic performance.

2. COMPLETED WORK

2.1 Empirical Analysis of VF and PS Methods
As the first step towards combining the merits of VF and

PS methods, we conduct a systematic empirical study to
examine their relative strengths and weaknesses [3]. To do
so, we devise a suite of “grid world” domains that can be
varied for four parameters: problem size s, action noise p,
expressiveness of function approximation χ, and state noise
σ. Across a broad range of parameters settings (1250 in
total), we record the performance of Sarsa, a classical VF
method, and cross entropy optimization, a PS method.

We see clear patterns in the domain characteristics for
which each class of methods excels. Our experiments il-
lustrate that VF methods enjoy superior sample complexity
and asymptotic performance when provided precise function
approximators and complete state information. However,
with inadequate function approximation and noisy state in-
formation, their performance drops significantly, and indeed
below the asymptotic performance achieved by PS methods.
With fixed values of s = 10, p = 0.3, and σ = 0, we observe
the effect of varying the function approximation paramater
χ in Figures 1(a) and 1(b). At χ = 1 (exact representation
of state space), VF indeed converges to the optimal policy,
and at a much quicker rate than PS. Yet, under a deficient
representation (χ = 0.1), VF performs very poorly when
compared to PS, which does not show such a drastic drop
in asymptotic performance. Increasing the state noise σ ad-
versely affects the asymptotic performance of both VF and
PS methods, although the decline is more gradual for PS.

We implement a simple scheme to integrate VF and PS,
which we enforce to share the same representation. In this
integrated method, VF+PS, the learned representation of
VF after a certain number of episodes of learning is trans-
ferred to PS. As visible in Figures 1(a) and 1(b), VF+PS
inherits both the superior sample efficiency of VS and the
high asymptotic performance of PS. Not only does VF+PS
achieve higher asymptotic performance than both VF and
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Figure 1: Empirical Analysis of VF and PS methods. In (a) and (b), note the break in the x axis at 10,000
episodes, beyond which a log scale is adopted. Descriptions are provided in text.
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Figure 2: Keepaway Pass and GetOpen. The graphs shows three GetOpen policies (Random (GO:R), Hand-
coded (GO:HC) and learned (GO:L)) when paired with a Pass policy that is Random (P:R (a)), Hand-coded
(P:HC (b)), or Learned (P:L (c)).

PS on a majority of our test settings, we also demonstrate its
effectiveness on the more complex Keepaway task in robot
soccer [5] (Figure 1(c)).

2.2 VF+PS for a Complex Multiagent Task
Whereas previous successful results in the Keepaway task

have limited learning to an isolated, infrequent decision that
amounts to a turn-taking behavior among players (Pass), we
expand the agents’ learning capability to include the more
ubiquitous action of moving without the ball (GetOpen) [4].
GetOpen induces a complex MDP, which is not suitable to
be learned by VF approaches, such as the one employed
by Stone et al. for learning Pass. Unlike Pass, there are
multiple players executing GetOpen at any instant of time.
We provide a PS method for learning GetOpen. As a result,
we learn a composite behavior (Pass+GetOpen) in which
multiple agents execute learned policies simultaneously.

As reported in Figure 2, the learned GetOpen policy
(GO:L) matches the best hand-coded policy for this task
(GO:HC) when paired with a hand-coded Pass policy (P:HC).
Indeed GO:L outperforms GO:HC when paired with a ran-
dom Pass policy (P:R). Importantly, we notice that Pass
and Getopen can be learned simultaneously, signifying that
a very complex multiagent task can be completely learned by
decomposing it into components that are learned separately
by VF and PS methods (Figure 2(c)).

3. PROPOSED WORK
In our empirical analysis, we identify three relevant classes

of methods to include in our study: actor-critic algorithms,
policy gradient methods, and VF methods using eligibility
traces [3]. All these methods show some degree of resistance
to deficient function approximation and partial observabil-
ity; we aim to include them in our comparison of VF and
PS methods. Intelligently determining the “transfer point”

in our VF+PS algorithm, i.e., when to stop applying VF and
switch to PS, constitutes yet another problem for proposed
research.

One of the reasons PS methods such as evolutionary algo-
rithms are not sample-efficient is because they have to negate
the stochasticity in fitness estimates of candidate solutions
by taking an average over multiple evaluations. Currently
we are currently working on a statistical technique to reduce
the number of such evaluations needed to get reliable esti-
mates. Needless to say, we seek to extend our results from
the Keepaway domain to other complex, realistic sequential
decision making tasks.
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During face-to-face conversation, the head is constantly in
motion, especially during speaking turns [2]. These move-
ments are not random; research has identified a number of
important functions served by head movements [7] [5] [3] [4].
Head movements provide a range of information in addition
to the verbal channel such as nods to show our agreement
or shakes to express disbelief.

The goal of our work is to build a domain-independent
model of speaker’s head movements and use the model to
generate head movements for virtual agents. To use the
model for interactive virtual agents, it needs to operate in
real-time. For this reason, we focus on features that are
readily available at the time head movements are generated.
In addition, we plan to make the model portable to other
systems by using features such as part of speech tags that are
easily obtainable even when using different language tools.

In this paper, we present a data-driven, automated ap-
proach to generate speaker nonverbal behavior, which we
demonstrate and evaluate by learning when head nods should
occur. Specifically, the approach uses a machine-learning
technique (i.e. learning a hidden Markov model [8]) to cre-
ate a head nod model from annotated corpora of face-to-face
human interaction, relying on the linguistic features of the
surface text. Figure 1 illustrates the overview of the proce-
dures to learn the model. Once the patterns of when people
nod are learned, then it can be used to generate head nods
for virtual agents by encoding a new sample with the factors
used for learning and feeding it to the model to obtain the
most likely head movement.

1. HEAD NOD PREDICTION MODEL

1.1 Gesture Corpus
For this work, we used the AMI Meeting Corpus [1]. It

is a set of multi-modal meeting records, which includes 100
meeting hours. The corpus includes annotations of meet-
ing context such as participant IDs and topic segmentations
as well as annotations on each participant’s transcript and
movements. Annotations of each meeting are structured in
an XML format and are cross-referenced through meeting
IDs, participant IDs, and time reference. For this work, we
used the recordings of 17 meetings, each consisted of three

to four participants, which adds up to be around eight hours
of meeting annotation.

1.2 Data Alignment and Feature Selection
Among all the annotations included in the corpus, we used

the transcript of each speaker, the dialog acts of each utter-
ance, and the type of head movements observed while the
utterance was spoken. The head types annotated in the
corpus are: nod, shake, nodshake, other, and none. We also
obtained the part of speech tags and phrase boundaries (e.g.
verb phrases and noun phrases) by sending the utterances
through a natural language parser. In addition, we combined
the features from our previous work in Nonverbal Behavior
Generator (NVBG) [6], which is a rule-based system that
analyzes the agent’s cognitive processing and the syntactic
and semantic structure of the surface text to generates non-
verbal behaviors for virtual humans. We looked for keywords
that trigger the rules associated with head nods in NVBG
and called those keywords key lexical entities. From the 17
meeting recordings we used, we collected 10,000 sentences
and wrote a script to cross-reference the corresponding an-
notation files and aligned the features on a word level.

When training hidden Markov models, we want to keep
the number of features low by eliminating uncorrelated fea-
tures when given a limited number of data samples. There-
fore, we reduced the number of features by counting the
frequency of head nods that occurred with each feature and
selected a subset of them. Based on the results of the fre-
quency counts, the final features selected for training are:

- Part of Speech: Conjunction, Proper Noun, Adverb, In-
terjection, Remainder
- Dialog Act: BackChannel, Inform, Suggest, Remainder
- Sentence Start: y, n
- Noun Phrase Start: y, n
- Verb Phrase Start: y, n
- Key Lexical Entities: y, n

1.3 Training Process
To learn the head nod model, hidden Markov models (HMM)

were trained. For this work, the input is a sequence of fea-
ture combinations representing each word. The sequential
property of this problem led us to use HMMs to predict
head nods. After aligning each word of the utterances with
the selected features as described above, trigrams of these
words were formed as the data set. For each trigram, the
head type was determined by the majority vote method; if
more than two out of three words co-occurred with a nod,
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Feature 
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Data 
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UH, 0, 0, Inform, 1, ... 0, shake
PER, 0, 0, Inform, 0, ..., 0, none
NNP, 1, 0, Inform, 0, ..., 0, none
NNP, 0, 0, Inform, 0, ... 0, none
PER, 0, 0, Suggest, 0, ... 1, nod
...

UH,  Inform, 1, 0, 1,  0, not_nod
PER, Inform, 0,1, 1, 0, not_nod
NNP, Inform, 0, 0, 0, 0, not_nod
NNP, Inform, 0, 1, 0, 0, not_nod
PER, Suggest, 0, 0, 0, 1, nod
...

Transcript

Head 
Movement

Dialogue 
Acts

...

Gesture Corpora

Training
Predicted 

Head 
Movement

p2

p1

NOD HMM

NOT_NOD HMM

Figure 1: Overview of the head nod prediction framework. The information in the gesture corpus is encoded
and aligned to construct the data set. The feature selection process chooses a subset of the features that
are most correlated with head nods. Using these features, probabilistic sequential models are trained and
utilized to predict whether or not a head nod should occur.

Measurement Equation Value
Accuracy (tp+tn) / (tp+fp+tn+fn) .8528
Precision tp / (tp+fp) .8249
Recall tp / (tp+fn) .8957
F-measure 2*precision*recall / .8588

(precision+recall)

Table 1: Measurements for the performance of the
learned model.

the trigram was classified as a nod instance. To determine
whether a trigram should be classified as a nod, we trained
two HMMs, a ‘NOD HMM’ and a ‘NOT NOD HMM,’ and
fed the same trigram into both models and compared the
results of each model.

To train a ‘NOD HMM,’ we collected all the positive in-
stances of ‘nod’ trigrams from the entire set of trigrams.
Then, we left out 20% of the ‘nod’ trigrams as a test set,
which is used in the final evaluation step, and used the re-
maining 80% of the data for training. To train the ‘NOD
HMM,’, we performed a standard 10-fold cross-over val-
idation. Similarly, we repeated these steps to train the
‘NOT NOD HMM.’ Finally, we ran the test set (20% of the
entire data left out) through the ‘NOD HMM’ and ‘NOT NOD
HMM’ and classified each sample to have the head move-
ment of whichever model produced a higher probability.

1.4 Results and Conclusion
To measure the performance of our learned model, we

computed the accuracy, precision, recall, and F-measure of
the learned model. Table 1 summarizes the results with
the equations used for computing the measurements. The
results show that the model can predict head nods with
high precision, recall, and accuracy rate even without a
rich markup of the surface text (i.e. only using the syn-
tactic/semantic structure of the utterance and dialog act).

This work could be extended in several ways. Currently
we are working on detecting the emotional state from each
utterance and adding this into the feature set to investigate
whether emotional data improves the learning. Further anal-
ysis of the linguistic structure may also be performed using
additional language tools to extract features such as empha-
sis points and contrast points. We can also extend the work
by learning the patterns of different head movements other

than nods. Finally, we plan to conduct evaluations with hu-
man subjects to investigate if the head movements generated
by the model are perceived to be natural.
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ABSTRACT
Forming e�ective coalitions is a major research challenge
in AI and multi-agent systems. Coalition structure genera-
tion (CSG), which involves partitioning a set of agents into
coalitions so that social surplus is maximized, is a central
research topic due to its computational complexity. In this
paper, we present new methods for CSG utilizing recently
developed compact representation schemes for characteris-
tic functions. We characterize the complexity of CSG un-
der these representation schemes. In this context, the com-
plexity is driven more by the number of �synergy coalition
groups� than by the number of agents. Furthermore, we
develop mixed integer programming formulations and show
that an o�-the-shelf optimization package can solve these
problems quite e�ciently.

Categories and Subject Descriptors
I.2.11 [Distributed Arti�cial Intelligence]: Multiagent sys-
tems; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Theory, Economics

Keywords
Coalitional Game Theory, Optimization Problem

1. INTRODUCTION
Coalition formation is an important capability in auto-

mated negotiation among self-interested agents. Coalition
structure generation (CSG) involves partitioning a set of
agents into coalitions so that social surplus is maximized.
This problem has become a popular research topic in AI and
multi-agent systems. The CSG problem is equivalent to a
complete set partition problem [7], and various algorithms
for solving the CSG problem have been developed. Sand-
holm et al. propose an anytime algorithm with worst-case
guarantees [6]. However, the worst-case time complexity
is O(nn), where n is the number of agents. On the other

Cite as: Coalition Structure Generation Utilizing Compact Characteris-
tic Function Representations (Short Paper), Naoki Ohta,Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
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hand, Dynamic Programming (DP) based algorithms [7, 3]
are guaranteed to �nd an optimal solution in O(3n). Ar-
guably, the state-of-the-art algorithm is the IP (integer par-
tition) algorithm [4]. This is an anytime algorithm, which
divides the search space into partitions based on integer par-
tition, and performs branch & bound search. Although the
worst-case time complexity for obtaining an optimal solution
is O(nn), in practice, IP is much faster than DP based algo-
rithms. Furthermore, Rahwan et al. introduce an extension
of the IP algorithm that utilizes DP for preprocessing [2].
As far as we are aware, all existing works on CSG assume

that the characteristic function is represented implicitly, and
we have oracle access to the function�that is, the value of
a coalition (or a coalition structure as a whole) can be ob-
tained using some procedure. This is because representing
an arbitrary characteristic function explicitly requires Θ(2n)
numbers, which is prohibitive for large n. However, charac-
teristic functions that appear in practice often display sig-
ni�cant structure, and it is likely that such characteristic
functions can be represented much more concisely. Indeed,
recently, several new methods for representing characteris-
tic functions have been developed [1]. These representa-
tion schemes capture characteristics of interactions among
agents in a natural and concise manner, and can reduce the
representation size signi�cantly. Surprisingly, to our knowl-
edge, these representation schemes have not yet been used
for CSG; this is what we set out to do in this paper. We
examine synergy coalition groups (SCGs) [1] which is one of
these compact representation schemes. The optimal choice
of a representation scheme depends on the application.
Quite interestingly, we �nd that there exists some com-

mon structure among these cases: in essence, the problem
is to �nd a subset of �SCGs� that maximizes the sum of rule
values under certain constraints. For each case, we show
that solving the CSG problem is NP-hard, and the size of
a problem instance is naturally measured by the number of
�SCGs� rather than the number of agents. Also, we give
a mixed integer programming (MIP) formulation that cap-
tures this structure. We show that an o�-the-shelf optimiza-
tion package (CPLEX) can solve the resulting MIP problem
instances quite e�ciently.

2. MODEL
Let A = {1, 2, . . . , n} be the set of agents. A characteris-

tic function v : 2A → ℜ assigns a value to each set of agents
(coalition) S ⊆ A. We assume that each coalition's value
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is nonnegative. A coalition structure CS is a partition of
A, i.e., CS = {S1, S2, . . .} satis�es the following conditions:
∀i, j (i ̸= j), Si ∩ Sj = ∅,

S

Si∈CS Si = A. The value of

a coalition structure CS, denoted as V (CS), is calculated
as follows: V (CS) =

P

Si∈CS v(Si). An optimal coalition

structure CS∗ is a coalition structure that satis�es the fol-
lowing condition:∀CS, V (CS∗) ≥ V (CS).

3. CSG USING SCG
Conitzer et al. introduce a concise representation of a

characteristic function called a synergy coalition group (SCG)
[1]. The main idea is to explicitly represent the value of a
coalition only when there exists some positive synergy.

De�nition 1 (SCG). An SCG consists of a set of pairs
of the form: (S, v(S)). For any coalition S, the value of the
characteristic function is v(S) = max{

P

Si∈pS
v(Si) : pS is a

partition of S, i.e., all the Si are disjoint and
S

Si∈pS
Si = S,

and for all the Si, (Si, v(Si)) ∈ SCG}. To avoid sense-
less cases that have no feasible partitions, we require that
({a}, 0) ∈ SCG whenever {a} does not receive a value else-
where in SCG.

Thus, if the value of a coalition S is not given explicitly
in SCG, it is calculated from the possible partitions of S.
Using this original de�nition, we can represent only super-
additive characteristic functions. But, if the characteristic
function is super-additive, solving CSG becomes trivial: the
grand coalition (the coalition of all agents) is optimal. To
allow for characteristic functions that are not super-additive,
we add the following requirement on the partition pS .

• ∀p′
S ⊆ pS , where |p′

S | ≥ 2, (
S

Si∈p′
S

Si, v(
S

Si∈p′
S

Si))

is not an element of SCG.

Example 1. Let there be �ve agents a, b, c, d, e and let
SCG = {({a}, 0), ({b}, 0), ({c}, 1), ({d}, 2), ({a, b}, 3),
({a, b, c}, 3)}. In this case, v({a, b, c, d}) = v({a, b, c}) +
v({d}) = 5. We cannot use v({a, b}) + v({c}) + v({d}) = 6,
because {a, b} ∪ {c} = {a, b, c} appears in SCG.

The (modi�ed) SCG can represent any characteristic func-
tion, including characteristic functions that are non-super-
additive, or even non-monotone. This is because in the worst
case, we can explicitly give the value of every coalition. Due
to the additional condition, only these explicit values can
then be used to calculate the characteristic function.
We show that when searching for CS∗, we need to consider

only the coalitions that are explicitly described in SCG.

Theorem 1. There exists a coalition structure CS for which
V (CS) = V (CS∗) and ∀S ∈ CS, (S, v(S)) ∈ SCG.

We omit the proofs in this report.
Due to Theorem 1, �nding CS∗ is equivalent to a weighted

set packing problem�equivalently, to the winner-determination
problem in combinatorial auctions [5], where each agent is
an item and each coalition described in SCG is a bid.

Theorem 2. When the characteristic function is repre-
sented as an SCG, �nding an optimal coalition structure
is NP-hard. Moreover, unless NP = ZPP, there exists no
polynomial-time O(|SCG|1−ϵ) approximation algorithm for
any ϵ > 0.

De�nition 2 (MIP formulation of CSG for SCG). The prob-
lem of �nding CS∗ can be modeled as follows.

max
X

(S,v(S))∈SCG

v(S) · x(S)

s.t. ∀a ∈ A,
X

S∋a

x(S) = 1,

x(S) ∈ {0, 1}

x(S) is 1 if S is included in CS∗, 0 otherwise.

In this formulation (which corresponds to a standard win-
ner determination formulation), the number of binary vari-
ables is equal to |SCG|, and the number of constraints is
equal to the number of agents.
Our methods can solve a problem with 100 agents and 100

SCGs in less than 10 millisecond.

4. CONCLUSION
We showed that coalition structure generation can scale

up signi�cantly when the characteristic function is repre-
sented using recently developed a compact representation
scheme which is called SCGs . For this case, we proved
that the problem is NP-hard and inapproximable, and de-
veloped MIP formulations. Experimental results illustrated
that while the state-of-the-art algorithm, which does not
make use of compact representation, requires around 90
minutes to solve a problem with 27 agents, our methods
can solve a problem with 100 agents and 100 SCGs in less
than 10 millisecond. Future work includes developing any-
time/approximation algorithms that utilize these represen-
tation schemes.
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1. INTRODUCTION
Computational trust and reputation models have been

recognized as key to design and implement multiagent sys-
tems [6]. These models manage and aggregate the informa-
tion needed by agents to efficiently select partners in un-
certain situations. In open multiagent systems agents have
unknown intentions and thus, some kind of interaction con-
trol is necessary to ensure a well-fare society. Several ap-
proaches can be taken for this endeavor, each of them pro-
viding certain level of control. At the security level, the use
of cryptography and digital signatures ensures privacy, in-
tegrity and authenticity of messages. At the organization
level it is possible to define protocols and norms that agents
must follow to interact, for instance, by defining electronic
institutions. Finally, at the social level, reputation and trust
models endow agents with a powerful social control artifact
that permits them to evaluate potential partners considering
certain criteria before the interaction is produced.

In recent years several reputation and trust models have
been developed [10]. Most of them following game theo-
retical approaches prepared to deal with relatively simple
environments. However, if we want to undertake problems
found in socially complex virtual societies, more sophisti-
cated trust and reputation systems based on solid cognitive
theories are needed. One such cognitive theory is defined in
[3].

This theory focuses on the impact that social evaluations
have in the mental state of the agents and not on the com-
putation of such evaluations. In this sense, the theory pro-
poses that agents evaluate the performances of other agents
according to certain criteria, and that these evaluations (so-
cial evaluations) can be only believed by the agents, only
communicated by the agents or both believed and commu-
nicated. When a social evaluation is believed by a group
of agents the theory refers to it as image. On the contrary,
when a social evaluation circulates in the society it is refer-
eed as reputation.

From this generic overview, the theory then develops a
more individualistic vision. From a single agent, it describes
a typology of possible decisions that autonomous agents can
make involving social evaluations:

• Epistemic decisions cover the decisions about updating

and generating social evaluations.

• Pragmatic-strategic decisions are decisions of how to
behave with potential partners using social evaluations
information, and thus, how agents use them to reason.

• Memetic decisions refer to the decisions of how and
when to spread social evaluations.

Traditionally, the field of computational trust and reputa-
tion systems has been focused on developing and formalizing
models as providers of social evaluations: on epistemic deci-
sions. However, little attention has been paid to pragmatic-
strategic and memetic decisions. This doctoral thesis em-
braces then these two types of decisions.

Currently, agents’ decisions of how to use reputation in-
formation and how and when to spread it have been de-
signed ad-hoc lacking any systematic or formal procedure.
We claim that due to the cognitive nature of social eval-
uations, when facing complex societies pragmatic-strategic
and memetic decisions can be as important as epistemic de-
cisions. From this perspective, for a cognitive agent, the way
a social evaluation is build can have the same importance as
the final evaluation.

Under this scenario the thesis analyzes the integration of
a particular cognitive reputation model, Repage [11], into a
cognitive agent architecture, Belief, Desire Intention (BDI).

Taking Repage as a paradigmatic example of cognitive
reputation model, the integration allows us on the one hand,
to properly formalize the logical reasoning process of a cogni-
tive agent where reputation information is implicitly taken
into account. Therefore, we provides a formal framework
that directly faces pragmatic-strategic decisions. On the
other hand, the logical reasoning process can be seen as a
way to build arguments over agents’ attitudes [7], and these
arguments can be used in negotiation processes, persuasion,
information exchange or for simply explanatory purposes.
Thereby, each action, intention, desire and belief of an agent
can be justified by building an argument that can include of
course reputation information. Thus,we are able to offer a
formal framework in which memetic decisions are formalized
in the context of argumentation frameworks.

2. OBJECTIVES AND DEVELOPMENT
In this section we detail the main objectives of the thesis.

2.1 Integration of Repage in a BDI Architec-
ture
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As we mentioned, Repage[11] is a computational repu-
tation system based on a cognitive theory or reputation [3],
and whose main characteristic is the distinction between im-
age (what agents believe) and reputation (what agents said)
in terms of social evaluations. Taking this model as exam-
ple, we specify a BDI agent architecture as a multicontext
system where Repage information is completely integrated.
The reasoning process of the agent shows how pragmatic-
strategic reputation-based decisions are taken in a formal
and systematic way. The research done in this specific task
is described below:

• Definition of probabilistic dynamic belief logic
Since Repage uses probabilities and actions when de-
scribing social evaluations, we defined a belief logic ca-
pable to capture all the information that Repage pro-
vides [9].

• Specification of the BDI agent: To capture in a
formal dimension the reasoning process of an agent,
we specify a BDI architecture where its belief based
is described using the formalism stated above. This
required to use also graded desires and intentions for
a correct integration. The underlying ideas for speci-
fying this model were taken from the work by Casali
and colleagues [2].

• Description of study cases: One of the most im-
portant task is to describes scenarios to enhance the
relevance and potential of the model, demonstrating
the advantages of paying attention to the integration
models in the reasoning process. We provide simple
scenarios where this necessity is proved.

2.2 Argumentation on Social Evaluations
Focusing on memetic decisions, we take advantage of the

BDI+Repage defined above to build a generic argumenta-
tion framework where reputation information is also present
in the arguments. As we mentioned in the introduction, ar-
gumentation can be used in different interaction processes,
like negotiation protocols or even simple information ex-
change, to give more strength to the communicated infor-
mation. In this point our work include:

• Definition of a formal argumentation framework:
As we mentioned, we defined our BDI+Repage as a
multicontext system [5]. Some work have shown how
multicontext systems can be used to build argumen-
tation frameworks[7]. Then, taking this approach we
defined also Repage as a multicontext system to de-
fine an argumentation framework where each agent’s
attitude can be justified also with information from
Repage. This implies for instance that certain inten-
tion can be supported by desires and beliefs, and that
these beliefs can be also justified by the information
coming from Repage.

• Study Cases: After the generic framework is defined,
we apply it to concrete negotiation or information ex-
change protocols.

2.3 Implementation and Simulations
The theoretical work is complemented with implementa-

tion and simulation results to show the performances of our

models facing concrete scenarios. Thus, our work incorpo-
rates empirical results to show how the theoretical aspects
can be instantiated with current platforms. We focus on the
following aspects:

• Prototypical Implementation: The BDI+Repage
model is implemented using JASON [1], a multiagent
platform that offers the advantages of logic program-
ming together with functionalities to define multiagent
scenarios. Of course, a direct implementation of our
theoretical models is not feasible, due the computa-
tional complexity. However, with appropriated simpli-
fications and assumptions instantiations are more than
possible, and even capable to provide massive simula-
tion results.

• Verification using Simulation: Using a BDI+Repage
implementation we put the model to work by defin-
ing multiagent environments where cognitive agents
have to deal with bad/good reputation information
in competitive markets, following some previous work
([8],[4]).
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1. THREE CURSES OF DIMENSIONALITY
Markov Decision Processes (MDPs) have proved to be useful

and general models of optimal decision-making in uncertain do-
mains. However, approaches to solving MDP’s using reinforce-
ment learning that depend on storing the optimal value function and
action models as tables do not scale to large state-spaces. Three
computational obstacles prevent the use of standard approaches
when dealing with problems with many variables. First, the state
space (and time required for convergence) grows exponentially in
the number of variables. This makes computing the value function
impractical or impossible in terms of both memory and time. Sec-
ond, the space of possible actions is exponential in the number of
agents, so even one-step look-ahead search is computationally ex-
pensive. Lastly, exact computation of the expected value of the next
state is slow, as the number of possible future states is exponential
in the number of variables. These three obstacles are referred to as
the three “curses of dimensionality”.

Much prior work exists on the topic of scaling reinforcement
learning to large state spaces. Many state abstraction and function
approximation techniques exist. These techniques are a result of
the desire to reduce the number of parameters used to represent the
value function, and thus reduce memory requirements and time to
converge. In addition to such techniques, methods to incorporate
prior knowledge can be successful in speeding up convergence.

In [4] I addressed the three curses of dimensionality, providing
solutions to each. To solve the problem of exploding state space, I
introduced a kind of function approximation called “tabular linear
functions”. To solve action space explosion, I used a hill climbing
technique over the action search space. To solve the problem of
computing the expected value of the next state, I introduced ASH-
learning, which is a model-based average reward algorithm that
uses afterstates to reduce the number of future states it is neces-
sary to examine.

2. ASSIGNMENT-BASED DECOMPOSITION
A common approach to dealing with issues of scaling is to take

advantage of domain-specific structure. Consider the setting of co-
operative multiagent reinforcement learning, where the agents are
trying to cooperate to maximize a global reward signal. The struc-
ture of such multiagent domains can be taken advantage of by de-
composing the states and actions.

In my thesis I propose a new technique for dealing with scal-

ing issues; in particular, I consider the problem of coordinating
multiple agents that share a common reward function through a
centralized controller. Many domains can be decomposed into a
set of weakly coupled agents, where each agent needs to know
only limited information about the others. This allows significant
scaling by limiting the amount of global information and facili-
tates local decision-making. I demonstrate how to implement these
techniques using a variety of common value iteration-based re-
inforcement learning techniques, including model-free Q-learning
and model-based methods.

Rather than addressing separate solutions to each of the three
curses of dimensionality, I propose a single technique for decom-
posing certain reinforcement learning problems such that all the
curses of dimensionality are addressed. In my thesis, I consider a
problem of multiple agents and multiple tasks, where the agents are
to be assigned to tasks in an optimal fashion. I call these problems
multiagent assignment MDPs. Given an assignment, the agents
might work almost independently of each other. However, the as-
signment can potentially change opportunistically. I also show that
the optimal value function even in the simplest of such assignment
tasks is not expressible as a coordination graph. The difficulty is
enforcing conditions such as assigning at most two agents to each
task to get a reward.

I present a new assignment-based decomposition [5] approach
where the action-selection step is split into two levels. At the top
level agents are assigned to tasks and at the lower level the tasks are
performed by the teams with minimal dynamic coordination. This
is similar to the hierarchical multiagent reinforcement learning of
[3], except that I learn a value function only at the lower level and
use search to optimize the higher level. My approach thus scales
much better since it is not necessary to store an exponentially large
value function at the top level.

I will also show how assignment-based decomposition may be
expanded and scaled to solve difficult problems, with many agents
and tasks. Fast search methods (such as those based on hill climb-
ing or bipartite matching algorithms) are useful here as the space of
possible assignments grows very large as the number of agents and
tasks increases. In addition, I will show how using transfer learning
and generalization techniques will allow a policy learned on only a
few agents or tasks may scale to many agents and tasks.

3. COORDINATION GRAPHS
When decomposing the states and actions of cooperative agents,

the issue of coordination of agent actions presents itself. Recent
work using coordination graphs between agents has been shown to
be successful here [1, 2]. The nodes of the graph represent agents
and the arcs between them represent potential interactions between
them. The long-term value of a joint action over all agents is ex-
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pressed as a sum of all the interaction terms, where each such term
is based on the actions and states of two agents. Bayesian net-
work inference algorithms such as variable elimination and belief
propagation have been adapted to finding the best joint action that
maximizes the total reward.

Unfortunately, in many domains, coordination graphs are not
static but change dynamically based on the states and actions of the
agents. The approaches based on coordination graphs are adapted
to dynamic state-based coordination [1, 2]. For example, in the
approach of [2], a set of rules dictate which agent should coordi-
nate with whom, and the value of a state is based on the current
coordination graph.

I will demonstrate a technique for combining coordination graphs
and assignment-based decomposition by adding a context-sensitive
coordination graph at the lower level of the assignment-based de-
composition. Doing this allows us some advantages over using ei-
ther technique alone through separation of concerns. First, con-
sideration of details such as collision avoidance can be delegated
to lower levels, freeing the top level to focus on assignment deci-
sions. Second, the coordination graph at the lower level can take
advantage of knowing the assignment when making coordination
decisions. Third, since the lower level value functions are used in
making the higher level assignment decisions, collision informa-
tion is indirectly percolated to the assignment level.

4. RELATIONAL TEMPLATES
In [4] I introduced a new description of a function approxima-

tion method called “Tabular Linear Functions” (TLFs). TLFs are
a means of combining tables and linear functions in such a way
as to preserve some of the best qualities of both. I will take this
reseach further, describing how to expand and apply TLFs to a re-
lational setting to create a function approximation method I call
“Relational Templates”. The use of relational templates greatly ex-
pands the kinds of domains that TLFs may be applied to.

I will also show how the use of relational templates facilitates
transfer learning and the ability to generalize across multiple do-
mains. Relational templates make be easily re-used across different
(similar) domains. Also, parameters learned on one domain may
often be transferred or generalized to multiple similar domains. I
will show how to combine relational templates with assignment-
based decomposition to easily scale a complex multiagent domain
from few to many agents and tasks.

5. BIPARTITE SEARCH
Assignment-based decomposition solves many of the three curses

of dimensionality, but introduces a new curse of it’s own: how to
scale the assignment search problem as the number of agents in-
creases? With many agents and tasks, there are correspondingly
many possible assignments. In [5], I describe three simple meth-
ods for search: exhaustive search, sequential greedy assignment,
and swap-based hillclimbing. All of these methods have trade off
solution speed and solution quality. I will introduce a new, more
sophisticated approximate search technique for solving the assign-
ment search problem: iterated bipartite assignment search. This
search algorithm quickly provides a high-quality approximation of
the true optimal assignment, allowing assignment-based decompo-
sition to scale to much larger numbers of agents and tasks.

6. PRELIMINARY RESULTS
I have implemented assignment-based decomposition success-

fully on many domains, including product delivery domains, mul-
tiagent predator-prey domains, and real time strategy (RTS) game

Figure 1: Comparison of flat vs. assignment-based decomposi-
tion in 6 agent vs. 2 task RTS domain.

simulations. For this latter domain, I implemented a simple RTS
game simulation on a 10x10 gridworld. Agents vary in number
from 3-12 archers or infantry, and may face off against up to 4 en-
emy “tasks”, either towers, knights, or ballista. These enemy units
are more powerful than friendly units, and thus agents must coor-
dinate in teams of up to three in order to destroy the enemy. Units
are described by attributes such as location, hit points, damage,
range, and mobility. I used a total reward version of ASH-learning
[4] and assignment-based decomposition to solve this domain. Re-
wards were either +1 for a kill, -1 for a death, and -.1 per time step.
As may be seen on this preliminary result in Figure 1, assignment-
based decomposition greatly outperforms “flat” ASH-learning. Not
only that, flat ASH-learning requires seven times as much CPU
time to complete a single run.
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1. INTRODUCTION
This thesis is motivated by the vast complexity of coopera-

tive stochastic multi-agent planning, where agents can affect
the transitions and rewards of one another, but in order to
coordinate their interactions effectively, must account for the
uncertainty in these actions. To combat this complexity, I
exploit interaction structure in weakly-coupled problems to
compute coordinated agent policies. I contend that when
the degree of inter-agent dependence is sufficiently limited,
the multi-agent problem can be solved more efficiently if it is
broken up into (partially) decoupled subproblems: formula-
tion of individual agent policies and coordination of abstract
interactions. In support of this thesis, I develop an approach
by which individual agents plan with local behavioral models
that incorporate only those portions of negotiated nonlocal
behavior that are needed for effective coordination.

2. PROBLEM DESCRIPTION
Figure 1 illustrates a multi-agent planning problem repre-

sented in the TAEMS language (as described in [1]). The ob-
jective is to plan policies for two autonomous vehicle agents
that coordinate their execution of hierarchical tasks with un-
certain durations so as to maximize expected quality within
mission deadlines. We can model this example as a Decen-
tralized Markov Decision Process (DEC-MDP) as discussed
by Becker, Zilberstein, and Lesser [1]. With the character-
istics that follow, I outline a class of weakly-coupled DEC-
MDPs that is the focus of thesis.
Temporal Grounding. Agents perform activities with
well-defined (but often probabilistically uncertain) durations.
The goals of the system are temporally constrained with

Figure 1: Autonomous Vehicle Example Problem

strict deadlines. This is all modeled by a finite-horizon
DEC-MDP for which time is a necessary state feature.
Decentralized Awareness. The agents do not have com-
plete views of the world. Instead, each is only aware of
a subset of information related to its individual activities.
Technically, this corresponds to a factored, locally fully ob-
servable DEC-MDP where each agent’s local state is com-
posed of features related to the execution of its own tasks.
Structured Interactions. Agents have a limited influ-
ence on the outcomes of each others’ activities. In partic-
ular, one agent may affect the local state transitions of an-
other (sequentially, but not concurrently) through the event-
driven manipulation of shared state features. In Figure 1,
structured interaction occurs when the UAV locates item X,
thereby enabling the UGV to successfully obtain X. I further
assume an agent’s non-local dependencies to be substantially
less abundant than those within its local transitions.
Limited Planning Time. In many domains, it is impor-
tant to plan coordinated behavior as soon as possible so as
not to delay mission execution. Here, quickly-planned ef-
fective agent policies may be preferable to optimal policies
that take longer to compute (or for large problems, are sim-
ply intractable). Thus, a solution to this class of problems is
a method of policy computation that can (1) produce effec-
tive, coordinated (approximately-optimal) policies for prob-
lems both large and small, and (2) depending on problem
difficulty, allow for trade-offs to be made between computa-
tion time and expected quality of computed behavior.

Previous work has solved related problems in restricted
contexts [1, 4, 5], but no planning method (to date) consti-
tutes a full solution to the class that I have outlined.

3. SOLUTION APPROACH
I propose an approach for coordinating interdependent
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agent activities through behavioral promises: commitments.
A commitment encodes an agent’s intention (and ability)
to interact with other agents (by altering their local transi-
tions). Because there is uncertainty in the system dynamics,
a commitment also encodes time and probability informa-
tion corresponding to when and with what likelihood other
agents can expect the interaction to occur. Through nego-
tiation of commitment values, the agents can plan their in-
teractions and coordinate their individual behaviors around
these planned interactions. The text that follows describes
the components of my approach, cites results to date, and
discusses planned research steps that I will take in complet-
ing my dissertation.

Commitment Modeling
Weakly-coupled problems involve highly-independent agents
that interact with one another only in a limited capacity.
Instead of considering all nonlocal dynamics, why not ab-
stract only that which is relevant for planning an agent’s
limited interactions? Commitment models provide effective,
compact approximations of external behavior. Although
commitments have been studied in various classical plan-
ning domains (by Durfee and Lesser [2], for example), my
problems call for the application of commitment theory [3]
to Markov Decision Processes. I conjecture that planning
with compact commitment-augmented local MDPs will al-
low weakly-coupled agents to coordinate complex, uncertain
behavior efficiently. To test this theory, I have developed a
method of augmenting MDPs with commitment models for
enablements (as are present in Figure 1) [6], and plan to ex-
tend my models to represent other structured interactions.

Commitment Enforcement
Agents can compute policies by applying standard MDP
solution techniques to their commitment-augmented local
models. But because they are modeling behavioral expecta-
tions, these local policies need to satisfy the commitments
that agents have promised. I have developed a method of
commitment enforcement that, unlike previous work that
injects artificial rewards and penalties to bias agents’ ac-
tions, constrains policies directly to probabilistically adhere
to committed interactions [6]. My linear programming ap-
proach automatically determines whether or not a given
commitment selection is feasible and, if it is, computes opti-
mal local behavior with respect to the commitment selection.

Commitment Negotiation
My commitment infrastructure transforms the problem of
computing coordinated behavior into a search over the space
of possible commitments. In fact, I have proven that, for
an interesting subset of those problems, there exist commit-
ments that (when enforced) yield globally-optimal joint poli-
cies [8]. For difficult problems, searching the commitment
space exhaustively will be intractable. But I have devel-
oped an effective approximate algorithm that iteratively se-
lects a set of commitments, builds local policies that enforce
those commitments, estimates global quality, and repeats
until greedily converging [7]. I have also demonstrated the
scalability of my approach, and made analytical arguments
[8] about the advantages that it has over existing methods,
but I plan to verify these arguments with further empiri-
cal comparisons to demonstrate its robustness compared to
other approaches (e.g. [1]).

Flexible Temporal Abstraction
In addition to approximating behavior, commitments pro-
vide a natural abstraction of the timing of uncertain inter-
actions. A complete commitment model of the UAV agent
(from Figure 1) would model every possible time (1,2, and
3) that locate X could occur. Consider instead representing
this interaction with only a single time (time 3, for exam-
ple) and the probability of locate X finishing by that time.
As I have shown [7], these temporally-abstract commitment
models maintain compactness as we scale to problems with
increased complexity. Commitments of this sort are capable
of encoding a single interaction time, all possible times, or
any number of times in between [8], allowing for a flexibility
of approximation that I am in the process of evaluating.

Policies Over Commitments
The last component of my approach is motivated by the fact
that there may be dependencies between interactions that
my present commitment models do not consider. For exam-
ple, if there is a chain of enablement interactions (whereby
Agent 1 enables Agent 2, allowing Agent 2 to enable Agent
3, etc.), I may be able to take advantage of this dependency
structure by explicitly accounting for changes in expected
behavior. If Agent 1 fails to enable Agent 2, Agent 3 should
change its expectation of getting enabled by Agent 2. I envi-
sion an extension to my approach that allows such changes to
be incorporated into a meta-level policy over commitments.

4. CONTRIBUTIONS
I expect that my completed dissertation will contribute:

• a principled framework for nonlocal abstraction in MDPs,
• an arsenal of LP-based policy formulation techniques for

constraining agent behavior,
• a scalable, efficient, flexibly-approximate solution meth-

odology for a relevant class of DEC-MDP problem, and
• a novel system of dynamic commitments.
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My thesis will demonstrate that distributed constraint
optimization (DCOP) search algorithms can be scaled up
(= applied to larger problems) by applying the knowledge
gained from centralized search algorithms.

1. INTRODUCTION
Agent-coordination problems can be modeled as dis-

tributed constraint optimization (DCOP) problems [10, 12,
20]. A DCOP problem consists of a set of agents, each re-
sponsible for taking on (= assigning itself) a value from their
finite domains. The agents coordinate their value assign-
ments subject to a set of constraints. Two agents are said
to be constrained if they share a constraint. Each constraint
has an associated cost which depends on the values taken on
by the constrained agents. A complete solution is an assign-
ment of values to all agents. The cost of a complete solution
is the sum of the constraint costs of all constraints resulting
from the given value assignments. Solving a DCOP prob-
lem optimally means to find a complete solution such that
the sum of all constraint costs is minimized. Finding such a
cost-minimal solution is NP-hard [10].

This model is rapidly becoming popular for formulating
and solving agent-coordination problems [6, 7, 5]. As a re-
sult, DCOP algorithms that use search techniques such as
ADOPT (Asynchronous Distributed Constraint Optimiza-
tion) [10] have been developed.

2. CONTRIBUTIONS
Since solving DCOP problems is NP-hard, my research

concentrates on finding intelligent ways to scale up DCOP
search algorithms such that they can be used in larger ap-
plications. DCOP search algorithms can be viewed as dis-
tributed versions of centralized search algorithms with as-
sumptions that are specific to DCOP problems. For exam-
ple, the solution space (= space of all possible solutions) of
DCOP problems is bounded by the number of agents in the
problem. Therefore, some of the knowledge gained by re-
searchers investigating centralized search algorithms might
apply to DCOP search algorithms as well.

To avoid reinventing the wheel, my thesis will center
around scaling up DCOP search algorithms by applying
the knowledge gained from centralized search algorithms.
I made a design choice to reuse the framework of ADOPT,
which is one of the pioneering DCOP search algorithms, as
the starting platform for the work in my dissertation. The
motivation for this decision is that ADOPT has been ex-
tended very widely [9, 1, 11, 2, 14]. In particular, my con-
tributions lie along two axes: (1) Memory availability of
agents and (2) Requirement of solution optimality.

For problems where the agents have a minimal amount
of memory and the cost-minimal solution is required, I in-
troduced a new DCOP search algorithm called Branch-
and-Bound ADOPT (BnB-ADOPT) in [16], that speeds
up ADOPT by one order of magnitude for sufficiently
large DCOP problems. BnB-ADOPT is a memory-bounded
asynchronous DCOP search algorithm that uses the mes-
sage passing and communication framework of ADOPT but
changes the search strategy of ADOPT from best-first search
to depth-first branch-and-bound search. Experimental re-
sults show that BnB-ADOPT is faster than ADOPT for suf-
ficiently large DCOP problems because the available heuris-
tics for these problems are often uninformed. The key con-
tribution of this work is the identification and verification
of depth-first branch-and-bound search instead of best-first
search as the preferred search strategy for DCOP problems,
which is consistent with findings for centralized search algo-
rithms [19].

For problems where the agents have more than the mini-
mal amount of memory, I introduced new caching schemes
called MaxPriority, MaxEffort and MaxUtility in [18], that
are tailored to DCOP search algorithms including ADOPT
and BnB-ADOPT, and thus speed up both algorithms fur-
ther. These caching schemes make use of the lower and
upper bounds maintained by agents in ADOPT and BnB-
ADOPT, as well as the knowledge of which search strategy
is employed by ADOPT and BnB-ADOPT. Our experimen-
tal results show that the MaxEffort and MaxUtility schemes
perform better than the other schemes for ADOPT, and the
MaxPriority scheme is generally no worse than the other
schemes for BnB-ADOPT. The speedup from caching for
ADOPT is significantly larger than that for BnB-ADOPT
since ADOPT needs to re-acquire information that was
purged due to memory limitations. The key contribution of
this work is the investigation of the different caching schemes
and the identification of preferred schemes for the different
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algorithms. In general, these schemes should apply to other
DCOP search algorithms as well since they also maintain
lower and upper bounds on the solution quality.

For problems where the cost-minimal solution is not re-
quired, I introduced two approximation mechanisms for
ADOPT and BnB-ADOPT that trade off solution qual-
ity for faster computation time in [17]. The approxima-
tion mechanisms, namely the Relative Error Mechanism and
the Weighted Heuristics Mechanism, provide relative error
bounds (i.e. a percentage off the minimal cost). These
mechanisms complement existing mechanisms that only al-
low absolute error bounds (i.e. an absolute off the mini-
mal cost). Additionally, experimental results show that the
Weighted Heuristics Mechanism dominates the other mecha-
nism. The key contribution of this work is the introduction
of the Weighted Heuristics Mechanism, which should also
apply to other DCOP search algorithms that use heuristics
to guide their search. This mechanism was motivated by
Weighted A* [13], an approximation algorithm based on the
centralized search algorithm A* [3].

I conducted my experiments in three problem types that
are commonly used to evaluate DCOP algorithms. The
three problem types are the problem of coloring graphs, the
problem of allocating targets to sensor networks and the
problem of scheduling meetings. I measured the runtime of
the algorithms using two commonly used metrics, namely
time slices called cycles [10] and non-concurrent constraint
checks [8].

3. FUTUREWORK
So far, my contributions only apply to static problems

(i.e. problems that do not change over time). To complete
my thesis, I plan to extend my work to dynamic problems
by developing new DCOP search algorithms that operate
efficiently in these environments. Specifically, I have two
objectives in mind: (1) algorithms that find cost-minimal
solutions of dynamic DCOP problems; and (2) algorithms
that find error-bounded solutions of DCOP problems that
are most similar to the solutions of the problems before they
changed (due to changes in the environment). I plan to
measure the similarity of two solutions by the number of
agents that take on the same value in both solutions.

To achieve the first objective, I plan to develop DCOP
search algorithms that perform a new search every time the
DCOP problem changes but reuse information from the pre-
vious searches. Therefore, these algorithms should be faster
than those that run each search from scratch. This plan is
motivated by incremental centralized search algorithms [15].

To achieve the second objective, I plan to develop a
DCOP search algorithm that employs limited discrepancy
search [4]. Limited discrepancy search searches for solu-
tions in the order of increasing numbers of discrepancies,
i.e. numbers of agents that take on values different from
their previous values, and is thus ideally suited for finding
the most similar error-bounded solution.
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